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Abstract
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an im-

portant role in their validation and ultimate certification. As a part of the validation process, this paper
describes an analysis method for determining a reliable flight regime in the flight envelope within which
an integrated resilent control system can achieve the desired performance of tracking command signals and
detecting additive faults in the presence of parameter uncertainty and unmodeled dynamics. To calculate a
reliable flight regime, a structured singular value analysis method is applied to analyze the closed-loop sys-
tem over the entire flight envelope. To use the structured singular value analysis method, a linear fractional
transform (LFT) model of a transport aircraft longitudinal dynamics is developed over the flight envelope
by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which
utilizes a matrix-based computational approach. The developed LFT model can capture original nonlinear
dynamics over the flight envelope with the ∆ block which contains key varying parameters: angle of attack
and velocity, and real parameter uncertainty: aerodynamic coefficient uncertainty and moment of inertia
uncertainty. Using the developed LFT model and a formal robustness analysis method, a reliable flight
regime is calculated for a transport aircraft closed-loop system.

Nomenclature

Robust analysis parameters

ω : frequency (rad/sec) ∆ : Set of uncertainty blocks

∆ : uncertainty block R : Real number set

C : Complex number set || · || : L2 norm
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Aircraft parameters

α : angle of attack (AOA), (rad) δe : elevator deflection, (deg)

q : pitch angle rate, (rad/sec) δs : stabilizer deflection, (rad)

V : True airspeed, (m/sec) T : thrust, (N)

θ : Pitch angle, (rad) c̄ : mean chord length, (m)

γ : flight path angle, (deg) q̄ : dynamic pressure, (N/m2)

m : total mass, (kg) c7 : inertia coefficient, 1/Iyy, (kg−1m−2)

Szeng : summation of z positions of engines, (m)

Aerodynamic coefficients

CDMach : drag coefficient at fixed mach number

CL : total lift coefficient

CLbasic : lift coefficient for the rigid airplane at zero stabilizer angle

Cm : pitch moment coefficient

Cmbasic : pitch moment coefficient for the rigid airplane at zero stabilizer angle

1 Introduction

Aircraft loss-of-control (LOC) accidents [1–3] comprise a significant aircraft accident category across all civil
transport classes, and can result from a large array of causal and contributing factors (e.g., system and
component failures, control system impairment or damage, inclement weather, inappropriate pilot inputs,
etc.) occurring either individually or in combination. Research [4–7] into the characterization of the aircraft
LOC phenomenon as well as LOC prevention and recovery system technologies is being conducted by NASA
as a part of its Aviation Safety Program (AvSP). In Ref. [8], it is shown that loss-of-control events can
involve flight beyond normal operating conditions. Moreover, these conditions are not well modeled in
current transport simulations. Validation of both the mathematical models and the systems technologies for
LOC conditions is therefore highly nontrivial.

Certification of LOC prevention and recovery systems (including failure detection, identification, and re-
configuration as well as upset recovery subsystems) for an aircraft will require a comprehensive validation
process (integrating analysis, simulation, and experimental methods) to ensure the safety and reliability of
these systems over the entire flight envelope. Robustness analysis for systems with structured uncertainty
could play an important role in this process. For an aircraft control system, robustness to nonlinear param-
eter variations over the flight envelope and at extreme flight conditions must also be considered. Ref. [9]
provides an excellent treatment of applying robustness analysis methods to the clearance of flight control
laws, and Ref. [5] provides a robustness analysis framework for failure detection and accommodation sys-
tems. Analytical robust control methods, such as the structured singular value method (µ-analysis method
in Refs. [5, 9]), have been applied for the clearance of a flight control law in Ref. [10]. The linear fractional
transformation (LFT) model of an aircraft has been constructed with a parameter uncertainty and linearized
models of the aircraft at each trim condition [10]. The LFT model in Ref. [10] can capture dynamics change
due to the uncertain parameters but not to flight condition variation.
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One of the clearance techniques for a flight control law is polynomial-based analysis in Ref. [11] that
checks the robust stability of a dynamic system by looking at the uncertain coefficients of the characteristic
polynomial, which is a function of flight condition. In Ref. [11], the safety flight envelope is calculated
based on the eigenvalues of the system evaluated at the given flight condition over the flight envelope using
the adaptive gridding approach. In this paper, the desired performance level of a closed-loop system is
represented by an induced L2 norm and is integrated with the robust analysis framework over the entire
flight envelope. In robustness analysis of the system, the nonlinearity of the original dynamics due to
flight condition variation is integrated with model uncertainty parameters. The nonlinearity and model
uncertainties are represented by the ∆ block of the LFT model which can capture the original nonlinear
dynamics.

Formulation of the LFT model can be extremely difficult and time consuming, especially for aircraft
problems involving parametric uncertainties (see Refs. [5, 9, 12–16]). In fact, the difficulty in formulating
the uncertainty model in LFT form has been a key impediment to performing robustness analysis for these
systems. Ref. [1] presents a numerical matrix-based modeling method and preliminary software tool for
computing LFT models from a polynomial system.

In Ref. [17], an integrated fault identification and fault tolerant control system (hereafter called an IFTC
system) of a transport aircraft is designed, which includes a fault tolerant control (FTC) law and fault
detection and isolation (FDI) filters. In Ref. [17], the FTC law is designed as an H∞ control law to minimize
command tracking errors under actuator fault occurrence, and the FDI filter is designed based on an affine
LPV model of the Boeing 747 aircraft to generate residual signals using a geometric approach [18]. The
FTC law is designed based on a linearized model with given unmodeled dynamics, and is applied on the
original nonlinear dynamics. Around a trim condition, the performance of the closed-loop system with the
original nonlinear dynamics can be predicted but far from the trim point the performance of the closed-loop
system cannot be predicted due to the nonlinearity. The conventional validation method for the closed-loop
is nonlinear simulation with the pre-defined time history of command signals.

In this paper, the nonlinearity due to flight condition variation is converted into a LFT form of the
system. The developed LFT model with the ∆ block, which contains key parameters such as angle of attack
and velocity, can capture the nonlinear dynamic variations over the flight envelope along with parameter
uncertainty and unmodeled dynamics. Using the robustness analysis tool (µ-analysis), the closed-loop system
can be evaluated over the flight envelope with the pre-defined performance level that is typically defined as
the induced-L2 norm with the frequency weight function. This paper determines and presents a reliable
flight regime, in which the IFTC system achieves the desired performance of command tracking and failure
detection.

This paper contains the following sections. In Section 2, the LFT modeling algorithm of the matrix-based
computational approach is summarized. In Section 3, the analysis problem for the IFTC system is described.
In Section 4, the LFT model of the longitudinal motion of the transport aircraft in Ref.[13] is developed over
the given flight envelope. In Section 5, a robustness analysis framework and the calculated reliable flight
regimes are described. In Section 6, nonlinear simulation results are described, and in Section 7 the results
are summarized with conclusions.

3



2 Numerical Parameter LFT Modeling Approach

For completeness, the matrix-based LFT modeling method presented in Refs. [1, 5] is briefly summarized.
Consider a polynomial system as 
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C(ρ) D(ρ)
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 , (1)

where ρ ∈ Rm and m is the number of uncertain parameters. Assume that the matrices A(ρ), B(ρ), C(ρ)
and D(ρ) are in multi-variable polynomial matrix form such as
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where fi(ρ) is a multi-variable polynomial function and nf is the total number of functions. The LFT
model of the system of Eq. (1) to be solved is depicted in Fig. 1. The matrix ∆(ρ) contains the system
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Figure 1: Block diagram of the LFT modeling problem

uncertainties, and can be represented as follows for parametric uncertainties.

∆(ρ) = diag[δ1In1 , δ2In2 , · · · , δmInm ] (3)

ρ = [δ1, δ2, · · · , δm] ∈ Rm (4)
The LFT equation associated with Fig. 1 is given below

S(ρ) = L(I −∆(ρ)P )−1∆(ρ)R + Q = S∆(ρ) + Q, (5)

where the matrix S(ρ) is a compact representation of the system model. The matrix P , R, and L are
associated with the uncertainty block ∆(ρ). The matrix Q represents the nominal system model. The
matrix S∆(ρ) can be solved for multivariate polynomial problems by replacing the matrix inversion with a
finite series expansion and a nilpotency condition,

S∆(ρ) = L∆R + L[∆P + (∆P )2 + · · · + (∆P )r]∆R (6)

(∆P )r+1 = 0 (7)
where r is determined by the degree of the largest nonzero term in S∆(ρ).

The blocks of L and R, and the main-diagonal blocks of P are solved simultaneously for each uncertain
parameter δi using all single-parameter nth-order terms, and the off-diagonal blocks of P are each solved
using the appropriate cross terms of S∆(ρ). The detailed procedures are described in Refs. [1, 5].
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3 Analysis Problem Statement for The IFTC System

The IFTC system of the Boeing 747-100/200 aircraft presented in Ref. [17] is briefly described here to carry
out the analysis problem of the system over a flight envelope. The IFTC system shown in Fig. 2 contains
a fault tolerant control law, fault detection and isolation filters, actuators and sensors. In Ref. [17], the
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Figure 2: The simplified block diagram of the IFTC system of a transport aircraft in Ref.[13].

fault tolerant control law was designed as a passive fault tolerant control law minimizing flight-path angle
and velocity command tracking errors in the presence of actuator faults. Actuator faults are modeled as
additive signals on each control channel. In Ref. [17], the LPV-FDI filters were designed, based on the affine
LPV model of the longitudinal motion of the Boeing 747-100/200 aircraft, as residual generators using the
geometric approach [18]. Note that in this paper, the linearized FDI filters around a trim point are used for
robustness analysis of the IFTC system.

In this paper, the analysis problem is considered as “in what region of the flight envelope can the designed
system achieve the desired closed-loop performance level of tracking commands and detecting additive faults
in the presence of parameter uncertainty and unmodeled dynamics ?”. Generally, the flight region to be
determined is hereafter called the reliable flight regime. The reliable flight regime is dependent on nonlinear
dynamics changes over the flight envelope, the desired performance level, maximum allowable command size,
additive faults, and system uncertainties.

To analyze the IFTC system over the entire flight envelope, the augmented IFTC system is constructed
with performance weighing functions (Wp and Wf ), a fault scale matrix (Fs), a command scale matrix (Cs)
and ideal closed-loop dynamics (Ti) and is shown in Fig. 3. The performance weight function, Wp, and
ideal response, Ti, can be defined to represent the desired performance, command tracking error, and the
weighting function Wf can be designed based on the desired fault detection accuracy for additive faults by
representing detection accuracy as the desired residual generation due to additive faults. The matrices, Cs

and Fs, can represent possible maximum size of command and additive faults, respectively. Note that in
the augmented closed-loop system, the nonlinear aircraft dynamics are replaced with the LFT model with
the block ∆model(α, V ). The block ∆model is decoupled into two components: a component, ∆m(α, V ),
which is flight condition dependent, and an uncertainty component, ∆mc, which represents real param-
eter uncertainty whose size is constant over the flight envelope. The block ∆model(α, V ) is rewritten as
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Figure 3: Augmented closed-loop interconnection block diagram of the IFTC system of a transport aircraft.
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Figure 4: Generalized block diagram of the IFTC system.

diag([∆m(α, V ),∆mc]). The block ∆act shown in Fig. 3 represents unmodeled actuator dynamics. The
augmented IFTC system is converted into the generalized block diagram shown in Fig. 4 with the uncertain
block ∆ = diag{∆model, ∆act}, which is useful for robustness analysis (µ-analysis).

For the robustness analysis of the IFTC system, robust performance in an H∞ sense for the subsystems
(Mpc, Mpf , Mrc, and Mrf ) shown in Fig. 4 is interpreted as follows:

1. µ(Mpc): Robustness to command tracking errors in control performance over the entire flight envelope
in the presence of real parameter uncertainty and unmodeled dynamics.

2. µ(Mrf ): Robustness to fault detection errors in FDI filter performance over the entire flight envelope
in the presence of real parameter uncertainty and unmodeled dynamics.

3. µ(Mpf ): Effect of faults on performance level at a trim condition.

4. µ(Mrc): Effect of commands on residual signals generated by the FDI filters.

In this paper, the reliable flight envelope of acceptable command tracking error in the presence of faults
and the uncertainty is defined as

Epcf ≡ {(α, V ) | ||ep||2
|| [c f ] ||2

≤ β, (α, V ) ∈ Fe, ∆mca ∈∆mca} (8)
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where the set Fe is the entire flight envelope and the uncertainty set ∆mca is defined as

∆mca ≡ {diag(∆mc,∆act)}
∆mc = {diag([δr1I1, · · · δrnIn]), |δri| ≤ 1, δri ∈ R}
∆act = {diag([δc1, · · · , δcm]), |δci| ≤ 1, δci ∈ C}

(9)

Here, δri and δci represent real and complex parameter uncertainties. The complex uncertainty δci is related
to unmodeled dynamics. Eq. (8) implies that the system in the reliable flight regime can achieve the desired
performance level with robustness to the uncertainty described by the block ∆mca.

Calculating the boundary of the set Epcf is not easy via nonlinear simulation results since it is dependent
on command time history, additive faults, and all elements of the uncertainty block ∆mca. The problem is
converted into calculating approximation of the set via

Ẽpcf ≡
⋃

i Ẽpcf,i

=
⋃

i{(α, V ) | ρRPM (Mpcf ,∆) > 1, (α, V ) ∈ Fi}
⊆ Epcf

(10)

where
∆ = diag([∆m(α, V ),∆mc,∆act])

Mpcf = [Mpc Mpf ]

Fi ≡ {(α, V ) | αmin ≤ α ≤ αmax, Vmin ≤ V ≤ Vmax}

(11)

Here, ρRPM (Mpcf ,∆), a robust performance margin of Fu(Mpcf ,∆), is defined as

ρRPM (Mpcf ,∆) =
1

maxωµ̄(Mpcf )
. (12)

with the normalized ∆.

A reliable flight regime is calculated as the following iterative process.

1. Initial Fi is defined as Fe. Calculate a performance margin, ρRPM , of Fu(Mpcf ,∆) with (α, V ), ∈ Fi.
Note that Fu denotes an upper LFT.

2. When ρRPM ≥ 1, the subset Fi is in a reliable flight regime. This iteration is terminated.

3. When ρRPM < 1, the subset boundary αmin, αmax, Vmin, and Vmax are rescaled with the performance
margin. This leads to a new subset, Fi+1. Then go to the step one.

After this process, the set Ft (shown in Figure 5), one of the iteration results, is defined as

Ft = {(α, V ) | αtmin ≤ α ≤ αtmax , Vtmin ≤ V ≤ Vtmax}. (13)

The reliable flight region Epcf lies between the boundary of Ft and Fe such as

Ft ⊂ Epcf ⊂ Fe (14)
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Figure 5: Illustrated plots for flight envelope and calculated subsets.

seen as the illustrated plot in Figure 5 since singular value analysis leads to conservative results of the
uncertain parameter domains of (α, V ). For a more accurate boundary of a calculated reliable flight regime,
a reliable flight envelope subset is defined as

Fi = {(α, V ) | αmin ≤ α ≤ αmax, Vmin ≤ V ≤ Vmax} (15)

where
αtmin ≤ αmin ≤ αtrim αtrim ≤ αmax ≤ αtmax

Vtmin ≤ Vmin ≤ Vtrim Vtrim ≤ Vmax ≤ Vtmax

(16)

An optimization problem to calculate the parameters, αmin, αmax, Vmin, and Vmax, is formulated as

min
αmin,αmax,Vmin,Vmax

|ρRPM (Mpcf ,∆(αmin, αmax, Vmin, Vmax))− 1|. (17)

To solve the optimization problem, the following steps are used. For example, to calculate a parameter Vmax

(unknown parameter), the other parameters are fixed as

αmin = pαtrim + (1− p)αtmin

αmax = qαtrim + (1− q)αtmax

(18)

where p and q are any values between 0 and 1. The parameter Vmax is calculated as

min
Vmax

|ρRPM (Mpcf ,∆(Vmax))− 1|. (19)
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With these parameters, the set Ẽpcf,i is defined as

Ẽpcf,i = {(α, V ) | αmin ≤ α ≤ αmax, Vmin ≤ V ≤ Vmax}. (20)

To calculate another subset Ẽpcf,i+1, Vmin is set as an unknown parameter and the other parameters are
fixed. In this case, Vmax is set as Vtmax . Thus, an optimization is formulated as

min
Vmin

|ρRPM (Mpcf ,∆(Vmin))− 1|. (21)

After this process, the sum of these subsets is shown as the dashed-dot line box in Fig. 5. The similar process
is repeated for αmin and αmax at fixed Vmin and Vmax such as

Vmin = pVtrim + (1− p)Vtmin

Vmax = qVtrim + (1− q)Vtmax

(22)

The combined set of these subsets provided with the calculated αmin and αmax is shown as the dotted line
box in Fig. 5. The union of all subsets in Eq. 10 is calculated for different values of p and q in Eqs.(18) and
(22), respectively.

4 LFT Modeling of the Longitudinal Motion

It is important to develop an accurate LFT model which can represent the original nonlinear dynamics of
the longitudinal motion. This section presents the assumptions and procedures to reformulate the nonlinear
equations of longitudinal motion into quasi-LPV polynomial form in Eq. (1). Then the LFT model is
developed from the polynomial model.

4.1 High Fidelity Nonlinear Model

The full nonlinear equations of the Boeing 747 longitudinal motion are taken from Ref. [17] over the up-
and-away flight regime. In this paper, the entire flight envelope Fe is defined as {(α, V ) | − 2 ≤ α ≤
10(deg), 150 ≤ V ≤ 250(m/sec)} at an altitude of 7000 m. The detailed nonlinear equations of motion are

α̇ = [1− q̄Sc̄
2mV 2 (1.45− 1.8xcg)dCL

dq ]q + [− q̄S
mV Kα

dCL
dδe

]δe

+[− 4
mV (sinα + 0.0436 cos α)]T + 1

V (sinα sin θ + cos α cos θ)g − q̄S
mV CLbasic ,

(23)

q̇ = c7q̄Sc̄2

2V [dCm
dq − 1

c̄ (1.45− 1.8xc.g.)dCL
dq

(cos αx̄c.g. + sin αz̄c.g.)]q

+c7q̄Sc̄Kα[dCm
dδe

− 1
c̄

dCL
dδe

(cos αc̄c.g. + sin αz̄c.g.)]δe

+c7q̄Sc̄Kα
dCm(he,M)

dδs
δs + c7SzengT + c7q̄Sc̄Cmbasic(α,M)

+c7q̄S[CDMach(M, CL)(cos αz̄c.g. − sinαx̄c.g.)− CLbasic(αw, M)(cos αx̄c.g. + sin αz̄c.g.)]

(24)

V̇ =
4
m

(cos α− 0.0436 sinα)T + (sin α cos θ − cos α sin θ)g − q̄S

m
CDMach(M, CL) (25)

θ̇ = q (26)
Note that aerodynamic coefficients and their derivatives are calculated from the look-up tables described in
Ref. [19]. The detailed definitions of aerodynamic coefficients are referred to Ref. [19,20].
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4.2 Quasi-LPV Polynomial Model of the Transport Aircraft

To develop a quasi-LPV polynomial model, the aerodynamic coefficients are fit into a polynomial function
form such that

a = [αn α(n−1) · · · 1]Ca[V m V (m−1) · · · 1]T + δa (27)

where a is an aerodynamic coefficient, Ca is a coefficient matrix and δa is the fitting error which is treated
here as real parameter uncertainty of the quasi-LPV model, here. The detailed polynomial fit aerodynamic
coefficients are given in Ref. [20]. In this example, for simplicity, the three largest fitting errors among
the aerodynamic coefficients are considered as parameter uncertainties which are not dependent on angle of
attack and velocity, i.e. |δCLb | ≤ 0.025, |δCDm | ≤ 0.01, and δCmq ∈ [−18.43 −17]. With the assumption that
the moment of inertia (Iyy) uncertainty is 5 percent of the nominal value (4527800 Kgm2), δIyy is defined.
In this example, the four uncertainties are considered real parameter uncertainties.

Using the polynomial fitted aerodynamic coefficients, the longitudinal motion is rewritten as




α̇

q̇

V̇

θ̇




= A(α, V, δmc)





α

q

V

θ




+ B(α, V, δmc)





δe

δs

T



 +





g/V

0

0

0




, (28)

where δmc = [δCLb δCDm δCmq δIyy ]T . The quasi-LPV model of the nonlinear polynomial model in Eq. (28)
is developed using the function substitution method [19, 21–23] to convert the term g/V into quasi-LPV
form. The benefit of the function substitution method is that the generated LPV model can represent the
nonlinear dynamics without linear approximation (such as Jacobian linearization) over the entire possible
flight region. Note that the state transformation method [21,24,25] can also provide an LPV representation
of a nonlinear system without linear approximation. There is, however, the limitation that the LPV model
should be inside equilibrium manifolds.

To apply the function substitution method, states of the model are defined as the deviation from a
reference point such as

α̃ = α− αt, Ṽ = V − Vt, θ̃ = θ − θt, (29)

where a reference point is chosen as a trim point: (αt, 0, Vt, θt). Note that αt = θt for level flight under a
trim condition. Using Eq. (29), Eq.(28) is rewritten as

˙̃x = A(α, V, δmc)(xt + x̃) + B(α, V, δmc)(ut + ũ) + [g/V 0 0 0]T ,

= A(α, V, δmc)x̃ + B(α, V, δmc)ũ + h(α, V ),
(30)

where
h(α, V ) = A(α, V )xt + B(α, V )ut + [g/V 0 0 0]T . (31)

Note that the control ũ is [δe− δet δs− δst T −Tt]T and the trim value ut is [δet , δst , Tt]T . Note that the
stabilizer is used only as a trimming device. Thus, the control inputs are considered as elevator and thrust
in this example.
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After algebraic manipulations, Eq. (31) is rewritten as

h(α, V ) =





hα

hq

hV

hθ




=





0 hαV

hqα hqV

hVα hVV

0 0







α̃

Ṽ



 (32)

where the detailed function form of hαV , hqα , hqV , hVα , and hVV are omitted due to space limitations and
are referred in Ref. [20]. Thus, the quasi-LPV model of the longitudinal motion of the transport aircraft in
Eqs. (23)-(26) is

˙̃x = {A(α, V, δmc) + H(V )} x̃ + B(α, V, δmc)ũ (33)

where

H(V ) =





0 0 hαV 0

hqα 0 hqV 0

hVα 0 hVV 0

0 0 0 0




. (34)

The detailed component matrices are available in Ref. [20]. Note that the quasi-LPV models are functions
of α, V and the selected reference point.

4.3 LFT Models of the Boeing 747-100/200 Aircraft

A LFT model is obtained and normalized from the quasi-LPV model in Eq. (33) using the numerical matrix-
based LFT model tool (NT) [1] and the Robust toolbox (RT) in MATLAB, respectively. Recall that it is
demonstrated in Ref. [1] that the two software tools can generate accurate LFT models which can represent
the original nonlinear dynamics.

A LFT model is dependent on reference point selection since the model in Eq. (33) is dependent on a
reference point which is one of the trim points. In this example, four reference points are chosen as trim
points and are shown in Table 1. The four reference points are calculated to trim the aircraft dynamics at
a given velocity and zero elevator deflection angle.

The developed LFT models have the block ∆model such that

∆model = diag([∆m(α, V ),∆mc])

= diag([δvI6×6, δα, δCLb δCDm δCmq δIyy ])
(35)

where Vmin ≤ δV ≤ Vmax and αmin ≤ δα ≤ αmax.

5 Reliable Flight Regime Analysis Results

To calculate a reliable flight regime of the IFTC system of the aircraft, the desired performance levels are
required, which are described by the weighting functions in Fig. 3. The command tracking performance
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Reference points α (deg) V (m/sec) δe (deg) δs (deg) T (N)

point 1 (P1) 4.1 180 0 -0.3 4.6 ×104

point 2 (P2) 2.6 200 0 0.1 4.1 ×104

point 3 (P3) 1.7 215 0 0.4 4.1 ×104

point 4 (P4) 0.9 230 0 0.7 4.3 ×104

Table 1: Four reference points

weighting function Wp is defined as

Wp = diag(
40(s/100 + 1)
s/0.005 + 1

,
100(s/100 + 1)

s/0.005 + 1
) (36)

to allow the flight path angle and the velocity to track their commands in the 2.5% and 1 % error ranges
over the low frequency region, respectively. The block Ti in Fig. 3 describes the ideal command tracking
responses of γ and V , which is selected as

Ti = diag(
0.352

s2 + 0.7s + 0.352
,

0.152

s2 + 0.3s + 0.152
), (37)

the second order transfer functions for the ideal closed-loop responses of γ and V . The desired performance
level is defined as the error between the ideal response and the closed-loop measurement described as an
induced L2 norm value. Recall that the matrix Cs represents allowable maximum size of command signals
(γcmd and Vcmd). Here, three cases are considered as follows:

Cs1 = diag(1 deg, 1 m/sec) (38)
Cs2 = diag(5 deg, 5 m/sec) (39)
Cs3 = diag(10 deg, 10 m/sec). (40)

The fault scale matrix Fs in Fig. 3 is set as diag(10, 10000) to represent 10 deg and 10000 N additive
faults in the elevator and the throttle channels, respectively. The fault detection weighting function Wf is
chosen as

Wf = diag(
0.35(s/1000 + 1)2

(s/0.5 + 1)2
,
0.002(s/1000 + 1)2

(s/0.1 + 1)2
) (41)

to represent about 3 deg and 500 N detection errors for 10 deg elevator fault and 10000 N throttle fault,
over the low frequency range. The actuator models [17] are 37

s+37 for the elevator actuator and 0.5
s+0.5 for

the throttle actuator. Here, the unmodeled actuator dynamics are defined as diag( 0.1(s/10+1)
s/500+1 , 0.1(s/10+1)

s/500+1 )
to represent 10% unmodeled dynamics over the low frequency range (< 10 r/s) and 500% over the high
frequency range (> 500 r/s). The uncertainty associated with the unmodeled dynamics is defined as a
complex number, ∆act = diag(δ1, δ2), δ1,2 ∈ C. The sensor model is approximated as an ideal sensor for
consistency with Ref. [17].

The µ upper bound of each subsystem with the block ∆ = diag([∆model,∆act]) is calculated using the
Robust Toolbox over the entire flight envelope and shown in Table 2. It is noticed from Table 2 that the µ
upper bounds for subsystems are dependent on reference point selection. The nominal dynamics of the LFT
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reference points µ̄(Mpc) µ̄(Mpf ) µ̄(Mpcf ) µ̄(Mrc) µ̄(Mrf ) µ̄(Mrcf )

point 1 (P1) 1.21 1.17 1.23 3.77 1.15 3.77

point 2 (P2) 1.11 1.09 1.12 3.64 1.10 3.64

point 3 (P3) 1.11 1.10 1.11 3.40 1.11 3.40

point 4 (P4) 1.04 1.04 1.04 3.12 1.05 3.12

Table 2: µ upper bounds (µ̄) for each subsystem at each reference point with the command scale Cs2

µ̄(Mpcf ) µ̄(Mrcf )

reference points Cs1 Cs2 Cs3 Cs1 Cs2 Cs3

point 1 (P1) 1.17 1.23 1.59 1.76 3.77 5.28

point 2 (P2) 1.09 1.12 1.50 1.76 3.64 5.09

point 3 (P3) 1.10 1.11 1.41 1.62 3.40 4.73

point 4 (P4) 1.04 1.04 1.32 1.55 3.12 4.31

Table 3: µ upper bounds (µ̄) for each subsystem at each reference point with the different command matrices.

model are defined by the selection of the reference point and the block ∆model of the LFT model captures
the nonlinear dynamics from the nominal dynamics. Thus, the calculated µ upper bound of subsystems can
vary with reference points.

It is observed from Table 2 that the µ upper bounds of Mpcf are less than or equal to 1.23 for all cases. This
means that the closed-loop system has robust performance in tracking commands with small degradation in
the presence of faults, real parameter uncertainties, and unmodeled actuator dynamics. µ̄(Mpc) in Table 2
represents robust command tracking in the presence of real parameter uncertainties and unmodeled actuator
dynamics over the entire flight envelope. µ̄(Mpf ) in Table 2 represents the fault effect on command tracking,
which is shown as small values in Table 2. This means the closed-loop system is a fault tolerant system
with robustness to the real parameter uncertainties and actuator unmodeled dynamics over the entire flight
envelope with small performance degradation.

It is observed from Table 2 that the µ upper bounds of Mrcf are larger than or equal to 3.12 for all cases.
This implies that the FDI filters have large performance degradation on detecting additive faults. The large
µ̄(Mrcf ) in Table 2 are caused by the large µ̄(Mrc) which represents the coupling effect between command
signals and residual signal generation. The small µ̄(Mrf ) imply that the FDI filter can detect the additive
fault within the pre-defined accuracy range (defined by Wf ) in a steady state condition (zero command
signals). To show the command signal size effect on robustness of subsystems, the µ upper bounds of the
subsystems are calculated with different command cases: Cs1, Cs2, and Cs3 defined in Eqs. (38)-(40), and
are shown in Table 3. It is observed from Table 3 that the larger allowable command signals lead to more
performance degradation and less performance robustness. Since the command signals affect residual signals
of the FDI filters, the large variation on µ̄(Mrcf ) is observed from Table 3 at a reference point. Now, reliable
flight regimes for the fault tolerant control subsystem, Mpcf , are calculated using the method described in
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Figure 6: The reliable flight regimes for Mpcf due to different reference points (symbol “+”) with the
allowable commanding signal size Cs2.
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Figure 7: The reliable flight regimes for Mrcf at the different reference points with the allowable commanding
signal size Cs2.

Section 3 and shown in Fig. 6. P1, P2, P3, and P4 in Fig. 6 represent reference points given in Table 1
and are shown as the “+” symbol. The solid rectangular line represents a reliable flight envelope calculated
by the first iterative method. Using the method described in Section 3, the shaded regions are calculated
as the subsets of the reliable flight envelope in this example. Reliable flight regimes for the FDI subsystem
Mrcf are calculated and are shown in Fig. 7. This reliable flight regime is much smaller than that for the
subsystem Mpcf due to the large command effect on residual signal generation. Based on Figs. 6 and 7, it
can be predicted that when γcmd and Vcmd are set as large signals as in the Cs3 case, the trajectory of V
and α could be outside of the calculated reliable flight regime of Mrcf and inside of the reliable flight regime
of Mpcf . The tracking error is expected to be small enough to achieve the pre-defined performance level
(defined by Wp). It is, however, expected that the residual signals is varied due to variation in the command
signals. This expected behavior will be validated via nonlinear simulation in the next section.
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6 Simulation Results

The IFTC system is simulated with different magnitudes of flight path angle and velocity commands in the
presence of elevator and thrust faults. For all simulations, the elevator fault is set as a step signal with 10
deg magnitude at 35 sec and the thrust fault is set as a step signal with 1000 N magnitude at 75 sec. The
closed-loop system is simulated with zero command signals (γcmd = 0, Vcmd = 0) and the above faults at
each of the reference points. Simulation results are shown in Fig. 8. It is observed from Fig. 8 that the
thrust residual signals generated by the FDI filters are within 500 N error accuracy range for all reference
points. It is also observed that there is a small coupling effect of the elevator faults at 35 sec. The elevator
residual signals are also followed with the fault signals within a 3 deg error range for all reference points.
The simulation results are matched with the robustness analysis results (Table 2) that µ̄(Mrf ) is less than
1.15 for all reference points. Note that the real parameter uncertainty is set as the worst-case uncertainty
values from the robustness analysis results, i.e., ∆mc = diag([−0.2, 0.4,−0.3, 1]), for all simulations. The
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Figure 8: Residual signals at different reference points.

closed-loop system is simulated with the command signals in the presence of faults at reference point 1. For
all simulations, the flight path angle command is an 85 sec duration pulse beginning at 15 sec with 1 deg
(Cs1), 5 deg (Cs2), and 10 deg (Cs3) magnitudes. The velocity command is a step at 75 sec with 1 m/sec
(Cs1), 5 m/sec (Cs2), and 10 m/sec (Cs3) step sizes. The V and γ time responses to the command signals are
shown in Fig. 9. In the top plots, the dashed lines represent command signals for Cs1, Cs2 and Cs3 cases,
respectively. It is observed from the top plots that the closed-loop system can track the command signals
within the desired performance level in the presence of the additive faults. Small oscillatory time responses
of the γ signals are observed at 35 sec due to the additive elevator faults. The bottom plots in Fig. 9 show
the residual signals generated by the FDI filters for each case. The dashed line presents the additive faults.
The elevator residual signals can detect the fault signal within 3 deg accuracy. However, the thrust residual
signals cannot follow the thrust fault signals. It is observed from Fig. 9 that the thrust residual signals have
been affected by γ command signals. The simulation results are matched with the robustness analysis results
of Table 3.

The trajectories of V and α for each time response of the closed-loop system are shown in Fig. 10 with the
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Figure 9: Simulation results with different magnitude command signals.
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Figure 10: Trajectories and reliable flight regimes for command signals.
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reliable flight regime for Mrcf calculated in Section 5. The left top plot in Fig. 10 shows reliable flight regimes
for command cases Cs1, Cs2, and Cs3 at the reference point, P1. The largest command case Cs3, leads to
the smallest reliable flight regime due to the command effect on the residual signals. The right top plots
in Fig. 10 shows that the trajectory is inside the reliable flight regime for Cs1. It implies that the residual
signals can detect the faults within the pre-defined accuracy (Wf ). It is matched with the simulation results
on the bottom plot of Fig. 9. The left bottom plot of Fig. 10 shows that the trajectory is not inside the
calculated reliable flight regime for Cs2. The right bottom plot shows that most of the trajectory is outside
the calculated reliable flight regime for Cs3. These lower plots imply that the FDI filters cannot generate
residual signals within the pre-defined accuracy range for these command cases (Cs2 and Cs3). These results
are matched with the time responses in Fig. 9 and the robust analysis results in Table 3.

7 Conclusion

In this paper, using the robust analysis tool, we calculate a reliable flight regime within the flight envelope
of the IFTC system in which the desired performance level can be achieved in the presence of parameter
uncertainty and unmodeled dynamics. To use the robust analysis tool, a LFT model of the longitudinal
motion of a transport aircraft is generated based on polynomial quasi-LPV models which are developed for
several reference points. Using the well-developed µ analysis method, the robustness of command tracking
error, effect of command on fault detection errors, effect of fault on command tracking error, and fault
detection error are calculated as µ upper bounds over the flight envelope in the presence of real parameter
uncertainties and unmodeled dynamics. Using the presented analysis framework, the IFTC system of the
transport aircraft is analyzed. The robust analysis results and the reliable flight regime analysis results are
verified with nonlinear simulations of the closed-loop system. This analysis method could be extended to also
consider robustness under noise or external disturbances (which are notoriously challenging for failure detec-
tion). This analysis approach could be used for pre-flight test check-out, as well as part of a fully-developed
validation and verification process. Future research will consider performance under highly nonlinear flight
regimes as a part of the analysis.

Acknowledgments

This research was supported by National Aeronautics and Space Administration under NASA Contract No.
NAS1-02117. The first author thanks the technical monitor Dr. Gregory at the NASA Langley Research
Center. Authors specially thank Dr. Andres Marcos and the research group of Dr. Balas at the University
of Minnesota for the nonlinear simulation of the IFTC system.

References

[1] Belcastro, C., Khong, T., Shin, J-Y, Balas, G., Kwatny, H., and Chang, B., “Uncertainty Modeling
for Robustness Analysis of Control Upset Prevention and Recovery Systems,” in AIAA Guidance,
Navigation and Control Conference, AIAA 2005-6427, 2005.

[2] Ranter, H., Airliner Accident Statistics 2006, in Aviation Safety Network, 2007.

17



[3] National Transportation Safety Board, Aviation Accidents from the past 10 years, in National Trans-
portation Safety Board, 2007.

[4] Shin, J-Y., N.E. Eva, and Belcastro, C., “Adaptive Linear Parameter Varying Control Synthesis for
Actuator Failure,” Journal of Guidance, Control, and Dynamics, Vol. 27, Sept.-Oct. 2004, pp. 787–794.

[5] Belcastro, C. and Chang, B-C., “Uncertainty Modeling for Robustness Analysis of Failure Detection
and Accommodation Systems,” in IEEE American Control Conference, Vol. 6, American Control Con-
ference, 2002, pp. 4776–4782.

[6] Jordan, T., Langford, W., and Hill, J., “Airborne Subscale Transport Aircrat Research Testbed- Aircraft
Model Development,” in AIAA Guidance, Navigation and Control Conference, AIAA-2005-6432, 2005.

[7] Bailey, R., Hostetler, R., Barnes K., Belcastro, Celeste, and Belcastro, Christine, “Experimental Vali-
dation: Subscale Aircraft Ground Facilities and Integrated Test Capability,” in AIAA Guidance, Navi-
gation and Control Conference, AIAA-2005-6433, 2005.

[8] Foster, J., Cunningham, K., Fremaux, C., Shah, G., Stewart, E., and Wilborn, J., “Dynamic Modeling
and Simulation of Large Transport Airplanes in Upset Conditions,” in AIAA Guidance, Navigation and
Control Conference, AIAA-2005-5933, 2005.

[9] Christopher, F., Andras, V., Bennani, S., and Selier, M., eds., Advanced Techniques for the Clearance
of Flight Control Laws. Spinger, 2002.

[10] Bates, D.G., Kureemun, R., and Mannchen, T., “Improved Clearance of a Flight Control Law Using
µ-Analysis Techniques,” Journal of Guidance, Control, And Dynamics, Vol. 26, Nov.-Dec. 2003, pp. 869–
884.

[11] Corraro, F. and Virgilio, M., “A Polynomial Based Clearance Method,” in AIAA Guidance, Navigation,
and Control Conference and Exhibit, Aug. 2003. AIAA 2003-5479.

[12] Morton, B. and McAfoos, R., “A Mu-test for Robustness Analysis of Real-parameter Variation Prob-
lem,” in Proceedings of the American Control Conference, Vol. 1, 1985, pp. 135–138.

[13] Morton, B., “New Application of mu to real-parameter Variations Problems,” in IEEE Conference on
Decision and Control, (Fort Lauderdale, FL), 1985.

[14] Belcastro, C., “On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT)
Uncertainty Models for Multivariated Matrix Polynomial Problems,” NASA, , November 1998. NASA
TM-1998-206939.

[15] Belcastro, C., Lim, K., and Morelli, E., “Computer-Aided Uncertainty Modeling of Nonlinear
Parameter-Dependent Systems, Part I: Theoretical Overview,” in Proceeding of the Computer Aided
Control System Design Conference, August 1999.

[16] Belcastro, C., Lim, K., and Morelli, E., “Computer-Aided Uncertainty Modeling of Nonlinear
Parameter-Dependent Systems, Part II:F-16 Example,” in Proceeding of the Computer Aided Control
System Design Conference, August 1999.

[17] Szaszi, I., Marcos, A., Balas, G., and Bokor, J., “Linear Parameter-Varying Detection Filter Design for
a Boeing 747-100/200 Aircraft,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 3, 2005,
pp. 461–470.

18



[18] Balas, G., Bokor, J., and Szabo, Z., “Failure Detection for LPV Systems-A Geometric Approach,” in
Proceedings of the American Control Conference, Vol. 6, 2002, pp. 4421–4426.

[19] Marcos, A. and Balas, G., “Linear Parameter Varying Modeling of the Boeing 747-100/200 Longitudinal
Motion,” in AIAA Guidance, Navigation and Control Conference, AIAA-01-4347, American Institute
of Aeronautics and Astronautics, (Montreal, Canada), Aug. 2001.

[20] Shin, J-Y., Belcastro, C., and Khong, T., “Closed-Loop Evaluation of An Integrated Failure Identifica-
tion And Fault Tolerant Control System for A Transport Aircraft,” in AIAA Guidance, Navigation and
Control Conference, AIAA-2006-6310, (Keystone, CO), 2006.

[21] Shin, J-Y., Worst-case Analysis and Linear Parameter Varying Control of Aerospace System. PhD
thesis, Department of Aerospace Engineering and Mechanics, University of Minnesota, 2000.

[22] Shin, J-Y., Balas, G.J., and Kaya, M.A., “Blending Methodology of Linear Parmeter Varying Control
Synthesis of F-16 Aircraft System,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 6, 2002,
pp. 1040–1048.

[23] Shin, J-Y. and Belcastro, C., “Quasi-Linear Parameter Varying Representation over Non-trim Region,”
in AIAA Guidance, Navigation and Control Conference, AIAA-2004-5423, (Providence, Rhode Island),
2004.

[24] Papageorgiou, G. and Glover, K., “Design, Analysis and Flight Testing of a Robust Gain Scheduled Con-
troller for the VAAC Harrier,” Department of Engineering, University of Cambridge, , 2000. Technical
Report CUED/F-INFENG/TR. 368.

[25] Shamma, J. and Cloutier, J., “Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying
Transformations,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 2, 1993, pp. 256–261.

19


